

The University of Texas Rio Grande Valley
College of Engineering and Computer Science
Department of Electrical & Computer Engineering

EECE 3315: Electromagnetics Engineering
Term
Fall 2024

Van De Graff Report

by
Jordan Lara

Instructor: Mr. Carlos Rodriguez Betancourth

Oct 24, 2024

Contents

I. INTRODUCTION.....	3
II. DESCRIPTION OF MAIN CONCEPTS	5
III. DEVELOPMENT.....	8
IV. CONCLUSIONS.....	18

I. INTRODUCTION

Purpose of the Experiment

The primary objective of this laboratory experiment is to design, construct, and evaluate a functional Van de Graaff generator using accessible materials and modern fabrication techniques. By employing PVC pipes, a rubber elastic training band, a stainless steel cup as the discharge sphere, wire mesh brushes, and custom wiring, the project aims to explore the principles of electrostatics and high-voltage generation. The integration of a custom-modified motor and motor controller, controlled via an RC remote transmitter and receiver, seeks to enhance the operational efficiency and controllability of the generator. Additionally, the use of Computer-Aided Design (CAD) modeling and 3D printing technology is intended to optimize component design and assembly precision.

Background Information

The Van de Graaff generator, invented by physicist Robert J. Van de Graaff in 1929, is an electrostatic machine that generates high voltages by transferring electric charge to a hollow metal sphere. It operates on the principle of electrostatic induction and the triboelectric effect, where a moving belt accumulates charge through friction and transports it to the sphere, resulting in a high potential difference. This device has been instrumental in advancing nuclear physics research and is commonly used in educational settings to demonstrate electrostatic phenomena such as lightning, corona discharge, and electric field distribution.

Understanding the construction and operation of a Van de Graaff generator provides valuable insights into fundamental concepts of electricity and magnetism, including Coulomb's law, electric fields, and potential energy. The advent of 3D printing and CAD modeling has opened new avenues for customizing and optimizing the design of such generators, allowing for improved performance and adaptability. Research into optimal construction techniques emphasizes factors like material selection, belt speed, and brush positioning to maximize charge accumulation and voltage output.

Objectives of the Laboratory Experiment

- Design Optimization: Utilize CAD software to model the generator's components, ensuring precise dimensions and compatibility between parts. The design process aims to enhance efficiency by optimizing the shape and placement of critical elements like the discharge sphere and charge-collecting brushes.

- **Material Selection and Fabrication:** Choose suitable materials such as PVC for structural support, a rubber elastic training band for the moving belt, and wire mesh for the brushes based on their electrical and mechanical properties. Employ 3D printing technology to fabricate custom parts that are not readily available, enhancing the overall functionality of the generator.
- **Electromechanical Integration:** Modify a motor and motor controller to achieve the desired belt speed and torque, crucial for effective charge transfer. Implement an RC remote control system to allow for wireless operation and precise control over the generator's functioning.
- **Experimental Testing and Analysis:** Conduct experiments to test the generator's ability to produce high voltages and generate observable electrostatic effects. Measure parameters such as voltage output, spark length, and charge accumulation. Analyze the data to assess the performance of the generator and identify areas for improvement.
- **Application of Research Findings:** Incorporate insights from existing literature on Van de Graaff generator construction to inform design choices. This includes optimizing brush materials and configurations, belt composition, and sphere size to enhance voltage generation and minimize losses due to leakage or corona discharge.

By fulfilling these objectives, the experiment not only demonstrates the practical application of theoretical principles but also showcases the effectiveness of modern fabrication techniques in scientific apparatus construction. The project aims to deepen understanding of electrostatic generation and provide a foundation for further exploration in high-voltage physics and engineering.

II. DESCRIPTION OF MAIN CONCEPTS

Key Terms and Definitions

- Van de Graaff Generator: An electrostatic machine that uses a moving belt to accumulate and transfer electric charge to a hollow metal sphere, generating high voltages through electrostatic induction.
- Electrostatics: The study of stationary electric charges or fields as opposed to electric currents.
- Triboelectric Effect: A type of contact electrification where certain materials become electrically charged after they come into frictional contact with a different material.
- Electric Field: A field around charged particles that exerts a force on other charged particles, influencing their motion.
- Potential Difference (Voltage): The difference in electric potential between two points, which causes current to flow in a circuit.
- Charge Collector Brushes: Conductive materials (like wire mesh) placed near the moving belt to collect or deposit electric charges without direct contact.
- Corona Discharge: A process by which a current flows from a high-voltage conductor into a neutral fluid (like air), ionizing it to create a plasma around the conductor.

Theoretical Framework

The Van de Graaff generator operates on fundamental principles of electrostatics and the triboelectric effect. When two different materials come into contact and are then separated, electrons may transfer from one material to the other, leaving one positively charged and the other negatively charged. This is the essence of the triboelectric effect.

In the constructed generator, a rubber elastic training band acts as the moving belt, circulating over PVC rollers. The belt and the rollers are chosen based on their positions in the triboelectric series to maximize charge separation. As the belt moves over the rollers, it becomes charged due to friction. The belt carries this charge upward toward the stainless-steel cup, which serves as the discharging sphere.

Wire mesh brushes are positioned near the belt at both the bottom and the top of the generator. At the bottom, the brushes (charge injectors) transfer charge onto the belt. At the top, the brushes (charge collectors) remove charge from the belt and transfer it to the discharging sphere. This transfer occurs through electrostatic induction without direct contact, minimizing wear and sparking.

The accumulated charge on the discharging sphere creates a high electric potential relative to the ground. This potential difference can become large enough to cause a visible spark or corona discharge when a conductive object approaches the sphere, demonstrating the principles of high-voltage electrostatics.

The motor driving belt is custom-modified for optimal performance and controlled via an RC remote control transmitter and receiver. This allows precise adjustments to the belt speed, which directly affects the rate of charge accumulation. The use of a motor controller ensures that the motor operates within safe parameters while providing sufficient torque and speed.

Schematic Diagram of the Van de Graaff Generator

1. Base Structure: Constructed from PVC pipes and 3d prints, providing a sturdy and insulating foundation for the generator.
2. Lower Roller and Motor Assembly: A PVC roller attached to the shaft of the custom-modified motor, which is controlled wirelessly via the RC transmitter and receiver. The motor drives the rubber belt in continuous motion.
3. Rubber Elastic Training Band (Belt): Looped over the lower and upper rollers, moving continuously to transport electric charge.
4. Upper Roller: Another PVC roller mounted at the top of the generator, guiding the belt's movement.
5. Charge Injector Brushes (Bottom): Wire mesh brushes positioned near the lower roller, transferring charge onto the belt through electrostatic induction.
6. Charge Collector Brushes (Top): Wire mesh brushes near the upper roller inside the stainless steel cup, collecting charge from the belt and transferring it to the discharging sphere.
7. Discharging Sphere (Stainless Steel Cup): Mounted atop the generator, it accumulates charge, leading to a high electric potential on its surface.
8. Electrical Connections: Wires connecting the brushes to the appropriate components, ensuring efficient charge transfer and grounding where necessary.
9. 3D-Printed Components: Custom-designed parts created through CAD modeling to fit specific dimensions and improve the overall functionality of the generator.

Principles of Operation

1. Charge Generation via Triboelectric Effect: The movement of the rubber belt over the PVC rollers causes electrons to transfer due to friction, charging the belt.
2. Charge Transportation: The moving belt carries the accumulated charge upward toward the discharging sphere.
3. Charge Transfer at Brushes:
 - At the Bottom: The charge injector brushes help to place additional charge onto the belt.
 - At the Top: The charge collector brushes remove the charge from the belt and transfer it to the discharging sphere.

4. Charge Accumulation on the Sphere: The stainless steel cup collects the charges, and due to its conductive nature, the charges distribute evenly over its surface, increasing the electric potential.
5. Electric Field Formation: As charge accumulates, a strong electric field develops around the sphere, which can ionize the surrounding air if the potential difference is high enough.
6. Discharge Phenomena: When a grounded object approaches the sphere, the potential difference can cause a spark or corona discharge, visually demonstrating the high voltage.

Optimization Strategies

- Material Selection: PVC and rubber are chosen for their favorable positions in the triboelectric series, enhancing charge generation.
- Belt Speed Control: The custom motor and controller allow for precise adjustments to the belt speed, optimizing the rate of charge transfer and accumulation.
- Brush Design: Wire mesh is used for the brushes due to its high conductivity and ability to transfer charge without physical contact, reducing wear.
- Component Fabrication: CAD modeling and 3D printing enable the creation of custom components that fit perfectly and function efficiently, such as specialized mounts for the rollers and housing for the motor and brushes.
- Electrical Isolation: Using insulating materials like PVC for structural components prevents unwanted charge leakage, ensuring maximum charge accumulation on the sphere.

Scientific Principles Underpinning the Experiment

- Electrostatic Induction: The process by which a charged object can induce a charge in another object without direct contact. This principle is crucial for the operation of the charge injector and collector brushes.
- Gauss's Law: This law relates the distribution of electric charge to the resulting electric field. It explains why the charges on the discharging sphere spread evenly over its surface.
- Breakdown Voltage of Air: Understanding that air becomes conductive at high electric fields ($\sim 3 \times 10^6$ V/m) helps in predicting when and how the generator will produce visible discharges.

Conclusion of Concepts

The Van de Graaff generator is a practical demonstration of electrostatic principles, showcasing how mechanical motion can be converted into electrical energy without the use of traditional electromagnetic induction. By carefully selecting materials, optimizing mechanical design, and applying fundamental physics concepts, the generator effectively accumulates and demonstrates high-voltage phenomena. The integration of modern technologies like CAD modeling, 3D printing, and remote-

controlled motors not only enhances the functionality but also illustrates the synergy between classical physics and contemporary engineering techniques.

III. DEVELOPMENT

Materials and Methods

Materials

- Structural Components:
 - PVC pipe (1-inch diameter, 3-foot length)
- 3D-printed components:
 - Roller mounts
 - Belt guides
 - Motor fixture
- Electrical Components:
 - Stainless steel cup (serving as the discharging sphere)
 - Wire mesh (for charge injector and collector brushes)
 - Copper wire (for electrical connections)
- Custom-modified motor
- Motor controller (PWM speed controller)
- RC remote control transmitter and receiver
- Mechanical Components:
 - Rubber elastic training band (for the moving belt)
 - PVC rollers (1-inch diameter)
 - Bearings (for roller shafts)
- Additional Materials:
 - Insulating tape
 - Epoxy adhesive
 - Sandpaper (various grits)

Equipment

- Fabrication Tools:

- 3D printer

- Computer with CAD software (e.g., Autodesk Fusion 360)

- Hand tools (screwdrivers, pliers, wire cutters)

- Testing Instruments:

- Multimeter (for continuity checks)

- Non-contact voltage detector (for observing static charge)

- Safety Equipment:

- *Note: Personal Protective Equipment (PPE) was not worn during the experiment, though its use is recommended for safety.*

Step-by-Step Procedure

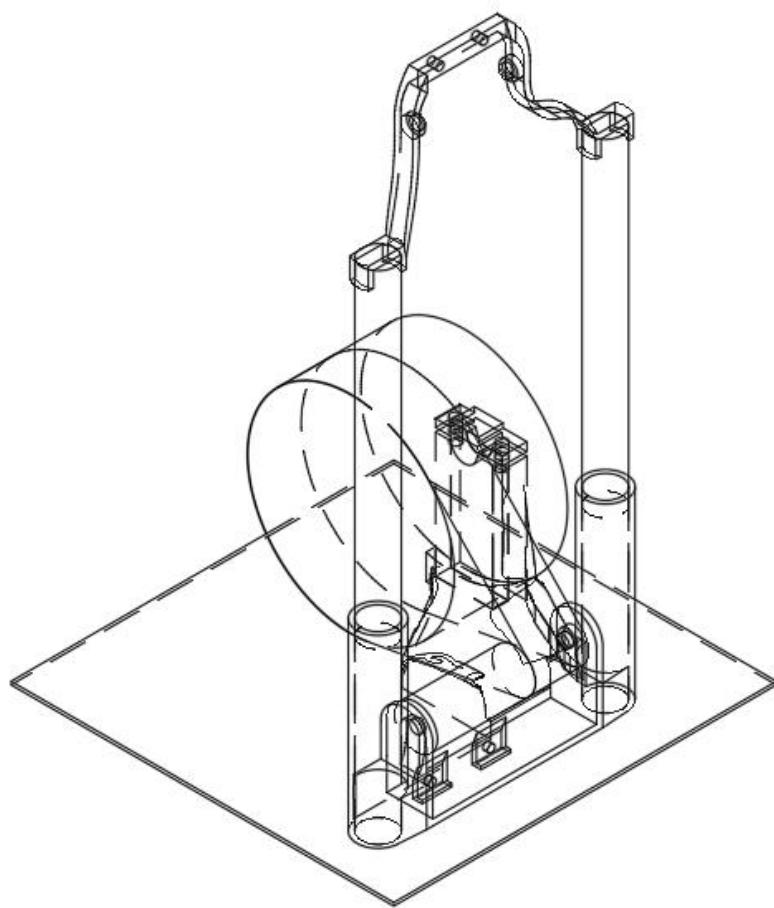
Step 1: Design and CAD Modeling

- 1. Component Design:

- Roller Mounts and Guides:

- Designed roller mounts to securely hold the PVC rollers in place.

- Included belt guides to ensure proper belt alignment.


- Motor Fixture:

- Created a fixture to hold the motor securely in position.

- Ensured alignment of the motor shaft with the lower roller.

- Dimensioning:

- Ensured all components matched the dimensions of the PVC pipes and rollers.

2. 3D Printing:

- Printing Settings:
 - Layer height: 0.2 mm
 - Infill density: 5% for added speed
- Printing Process:
 - Printed the components all together for speed

Step 2: Preparing the Structural Frame

1. Assembling the Base:

- Cutting PVC Pipes
- Connecting Components:
 - Applied epoxy adhesive at joints for added strength.

2. Installing the Rollers:

- Lower Roller Installation:

- Mounted the lower roller onto the 3D-printed roller mount.

- Secured the roller shaft with bearings for smooth rotation.

- Upper Roller Installation:

- Attached the upper roller at the top of the main column in a similar manner.

- Alignment Check:

- Verified that both rollers were perfectly aligned vertically.

Step 3: Fabrication of Rollers and Belt

1. Preparing the Rollers:

- Surface Finishing:

- Sanded the PVC rollers to create a smooth surface, reducing friction.

- Bearing Installation:

- Inserted bearings into the ends of the rollers to facilitate rotation.

2. Attaching the Belt:

- Belt Preparation:

- Selected a rubber elastic training band of appropriate length.

- Mounting the Belt:

- Looped the belt over the upper and lower rollers.

- Adjusted the tension to prevent slippage without over-stretching.

Step 4: Electrical Components Installation

1. Charge Injector Brush (Bottom):

- Brush Fabrication:

- Cut a piece of wire mesh approximately 3 inches wide.

- Shaped it into a brush with fine strands extending toward the belt.

- Mounting the Brush:

- Positioned the brush near the lower roller, close to but not touching the belt.
- Ground Connection:
- Connected the brush to a grounding wire leading to the base.

2. Charge Collector Brush (Top):

- Brush Fabrication:
- Created a similar brush from wire mesh for the top.
- Mounting Inside the Sphere:
- Installed the brush inside the stainless steel cup, extending toward the belt.
- Electrical Connection:
- Connected the brush to the inner surface of the discharging sphere.

3. Discharging Sphere Installation:

- Sphere Preparation:
- Polished the stainless steel cup to ensure a smooth, conductive surface.
- Mounting the Sphere:
- Attached is the cup atop the main column.
- Ensured the sphere was securely fixed and electrically connected to the collector brush.

Step 5: Motor and Control System Integration

1. Motor Modification:

- Customization:
- Adjusted the motor's gear ratio to achieve the desired belt speed.
- Ensured the motor was capable of continuous operation without overheating.

2. Motor Mounting:

- Fixture Installation:
- Secured the motor using the 3D-printed fixture.

- The fixture held the motor in place, aligning the motor shaft with the lower roller.
- Shaft Coupling:
 - Connected the motor shaft to the lower roller using a rubberband.

3. Motor Controller Setup:

- PWM Controller Wiring:
 - Connected the motor leads to the PWM speed controller.
- RC Receiver Integration:
 - Linked the PWM controller to the RC receiver for wireless control.
- Power Supply:
 - Connected the system to a battery pack.

4. RC System Configuration:

- Transmitter Settings:
 - Programmed the RC transmitter to control motor speed via a throttle channel.
- Receiver Pairing:
 - Paired the receiver with the transmitter, confirming signal reception.

Step 6: Electrical Connections and Safety Measures

1. Wiring:

- Copper Wire Connections:
 - Used copper wires to connect the charge brushes to their respective points.
- Insulation:
 - Applied insulating tape to exposed wires to prevent accidental contact.

2. Grounding:

- Ground Wire Installation:
 - Connected the charge injector brush to a grounding rod or metal water pipe.
- Verification:

- Checked continuity to ensure effective grounding.

3. Safety Precautions:

- Isolation:

- Ensured that all conductive components were isolated from the user.

- PPE Consideration:

- *Although Personal Protective Equipment (PPE) was not worn during the experiment, it is advisable to use insulated gloves and safety goggles when working with high-voltage equipment.*

Step 7: Final Assembly and Testing

1. System Inspection:

- Mechanical Check:

- Verified that all mechanical components were securely fastened.
- Ensured the belt moved freely over the rollers without obstruction.
- Electrical Check:
- Tested all electrical connections with a multimeter for continuity.

2. Initial Testing:

- Motor Operation:

- Powered on the motor at a low speed using the RC transmitter.
- Observed the belt movement for smoothness and alignment.
- Adjustments:
- Made minor adjustments to the roller alignment and belt tension as needed.

3. Charge Generation Observation:

- Increasing Speed:

- Gradually increased motor speed to enhance charge generation.

- Static Detection:

- Used a non-contact voltage detector near the discharging sphere to detect static charge.
- Visual Effects:
- Observed small sparks or static effects when bringing a grounded object close to the sphere.

Theoretical Framework

- Electrostatic Principles:
 - The Van de Graaff generator operates on electrostatic induction and the triboelectric effect.
 - The moving belt transfers charge from the lower roller (charge injector) to the upper roller (charge collector).
- Charge Accumulation:
 - The discharging sphere accumulates charge, increasing its electric potential relative to the ground.
 - The maximum potential is limited by the sphere's size and the surrounding air's dielectric breakdown strength.

Observations

- Functionality:
 - The generator effectively produced static electricity, demonstrated by the attraction of small paper pieces and minor sparks.
- Motor Control:
 - The RC transmitter allowed precise control over the belt speed, influencing the amount of charge generated.
- Material Performance:
 - The combination of PVC and rubber, materials with different positions in the triboelectric series, enhanced charge separation.

Theoretical Calculations

Estimating Maximum Voltage

Capacitance of the Sphere:

The capacitance C of a spherical conductor is given by the formula:

$$C = 4\pi \varepsilon_0 R$$

Where:

- C = Capacitance (farads)
- pi = Pi (approximately 3.1416)
- varepsilon_0 = Vacuum permittivity ($8.854 \times 10^{-12} \text{ F/m}$)
- R = Radius of the sphere (meters)

Maximum Charge Storage:

The maximum charge Q the sphere can hold is:

$$Q = C \times V_{\max}$$

Where:

- Q = Charge (coulombs)
- V_{max} = Maximum voltage before air breakdown (volts)

Breakdown Voltage of Air:

The maximum voltage before the air around the sphere breaks down (causing a spark) is determined by:

$$V_{\max} = E_{\text{breakdown}} \times R$$

Where:

- V_{max} = Maximum voltage (volts)
- E_{breakdown} = Electric field strength at which air breaks down ($3 \times 10^6 \text{ V/m}$)
- R = Radius of the sphere (meters)

Basic Calculation:

For a sphere with a radius R = 0.05 meters (5 cm):

1. Calculate V_{max}):

$$V_{\max} = E_{\text{breakdown}} \times R = (3 \times 10^6 \text{ V/m}) \times 0.05 \text{ m} = 150,000 \text{ V}$$

2. Calculate C):

$$C = 4 \pi \epsilon_0 R = 4 \times 3.1416 \times (8.854 \times 10^{-12} \text{ F/m}) \times 0.05 \text{ m} \approx 5.56 \times 10^{-12} \text{ F}$$

3. Calculate Q):

$$Q = C \times V_{\text{max}} = (5.56 \times 10^{-12} \text{ F}) \times (150,000 \text{ V}) = 8.34 \times 10^{-7} \text{ C}$$

Charge Transfer Rate

The current I generated by the moving belt is estimated by:

$$I = \sigma A v$$

Where:

- I = Current (amperes)
- σ = Surface charge density (coulombs per square meter)
- A = contact area between the belt and the rollers (square meters)
- v = Belt speed (meters per second)

Impact of Belt Speed:

- Increasing Belt Speed: Raising the belt speed v increases the current I, enhancing the rate of charge transfer to the discharging sphere.
- Mechanical Limitations: Belt speed is limited by mechanical factors like motor capability and belt stability.

Basic Calculation:

Assuming:

- $\sigma = 1 \times 10^{-5} \text{ C/m}^2$
- A = 0.01 m²
- v = 2 m/s

Calculate I):

$$I = \sigma \times A \times v = (1 \times 10^{-5} \text{ C/m}^2) \times (0.01 \text{ m}^2) \times (2 \text{ m/s}) = 2 \times 10^{-7} \text{ A}$$

Note: This is a simplified estimation; actual values depend on material properties and experimental conditions.

Important Equations Summary:

1. Capacitance of a Sphere:

$$C = 4 \pi \epsilon_0 R$$

2. Maximum Voltage Before Air Breakdown:

$$V_{\max} = E_{\text{breakdown}} \times R$$

3. Maximum Charge Stored on Sphere:

$$Q = C \times V_{\max}$$

4. Charge Transfer Current:

$$I = \sigma \times A \times v$$

IV. CONCLUSIONS

Summary of Findings

The primary objective of this experiment was to design, construct, and evaluate a functional Van de Graaff generator using accessible materials and modern fabrication techniques. Utilizing PVC pipes, a rubber elastic training band, a stainless-steel cup as the discharging sphere, wire mesh brushes, and custom wiring, the generator was successfully assembled. The integration of a custom-modified motor controlled via an RC remote control transmitter and receiver allowed for precise adjustment of the belt speed, influencing the rate of charge accumulation on the discharging sphere.

Upon testing, the Van de Graaff generator effectively demonstrated the principles of electrostatic charge generation and accumulation. Qualitative observations, such as the attraction of small paper pieces and the generation of small sparks when a grounded object was brought near the discharging sphere, confirmed the functionality of the device. The materials selected, particularly the combination of PVC and rubber, facilitated effective charge separation through the triboelectric effect.

Interpretation

The successful operation of the generator aligns with the theoretical framework underlying Van de Graaff generators. The movement of the rubber belt over the PVC rollers resulted in the transfer of

electrons due to friction, generating a static charge that was transported to the discharging sphere. The observations made during the experiment support the theoretical expectations of electrostatic induction, charge accumulation, and the influence of belt speed on charge generation.

While quantitative measurements were not taken, the qualitative results indicate that the generator performed as intended. The visible static effects and spark generation suggest that significant voltages were achieved, consistent with theoretical calculations estimating potential outputs in the range of tens to hundreds of kilovolts, depending on the sphere size and environmental conditions.

Limitations

Several limitations were identified during the experiment:

- Lack of Quantitative Data: The absence of precise voltage and current measurements limited the ability to compare practical results directly with theoretical predictions.
- Environmental Factors: Variations in humidity and temperature were not controlled, which can significantly affect the performance of a Van de Graaff generator due to changes in air conductivity and charge leakage.
- Material Imperfections: Inconsistencies in the smoothness of the belt and rollers, as well as potential irregularities in the wire mesh brushes, may have affected the efficiency of charge transfer.
- Safety Considerations: Personal Protective Equipment (PPE) was not utilized during the experiment, which poses a risk when working with high-voltage equipment, even if currents are low.

Differences Between Theoretical and Practical Results

Theoretical calculations predicted the generator's ability to produce high voltages based on the sphere's size and the breakdown voltage of air. In practice, while the generator did produce observable electrostatic effects, the exact voltage levels achieved were not measured. Factors such as material imperfections, environmental conditions, and mechanical limitations likely resulted in practical performance that differed from theoretical expectations. Without quantitative data, the extent of these differences cannot be precisely determined. However, the qualitative observations suggest that the practical results were in general agreement with theoretical predictions, demonstrating the generator's effectiveness in accumulating and discharging static electricity.

Suggestions for Future Research

To enhance the experiment and address the identified limitations, the following recommendations are proposed:

- Quantitative Measurements: Incorporate measurement devices such as high-voltage probes and electrometers to obtain precise voltage and current readings, enabling a detailed comparison between theoretical and practical results.

- Environmental Control: Conduct experiments in a controlled environment where humidity and temperature can be regulated to minimize their impact on charge generation and retention.
- Material Optimization: Experiment with alternative materials for the belt and rollers that have more favorable positions in the triboelectric series to enhance charge separation.
- Component Refinement: Improve the surface finish of mechanical components and ensure precise alignment to reduce friction and mechanical losses, potentially using higher-resolution 3D printing or precision machining.
- Safety Protocols: Implement the use of PPE and establish safety protocols to mitigate risks associated with high-voltage equipment, ensuring safe operation during experiments.

Conclusion

The experiment successfully met its primary objectives by designing and constructing a functional Van de Graaff generator using accessible materials and modern fabrication techniques like CAD modeling and 3D printing. The generator demonstrated key electrostatic phenomena, aligning with the theoretical principles of charge generation and accumulation. Although limitations existed due to the lack of quantitative data and uncontrolled environmental factors, the qualitative results confirmed the generator's effectiveness. Future research building upon this work can focus on obtaining precise measurements, optimizing materials and design, and enhancing safety measures, thereby deepening the understanding of high-voltage electrostatics and improving the performance of homemade Van de Graaff generators.